(Back to the menu - click here.)


                                 “Optical microscopy: the resolution revolution “





 Friday, 20. Nov. 2015

Audio-only-Recording as MP3-File (smallest possible size):

       -   Audio.mp3   (ca.21 Mb)


Video-Recording for any system with MP4-support:

       -   Video.mp4   (ca.151 Mb)


 09:15 – 10:00


Speaker : Stefan W Hell ( Max Planck Institute for Biophysical Chemistry, Göttingen, Germany)


Abstract: Throughout the 20th century it was widely accepted that a light microscope relying on conventional optical lenses cannot discern details that are much finer than about half the wavelength of light (200-400 nm), due to diffraction. However, in the 1990s, the viability to overcome the diffraction barrier was realized and microscopy concepts defined, that can resolve fluorescent features down to molecular dimensions. In this lecture, I will discuss the simple yet powerful principles that allow neutralizing the limiting role of diffraction1,2. In a nutshell, feature molecules residing closer than the diffraction barrier are transferred to different (quantum) states, usually a bright fluorescent state and a dark state, so that they become discernible for a brief period of detection. Thus, the resolution-limiting role of diffraction is overcome, and the interior of transparent samples, such as living cells and tissues, can be imaged at the nanoscale.


                                    <<<<<<  Denna sida ändrades, den 15 juni 2017 kl.18:26:36    >>>>>>